This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.

If you have previously purchased this report then please use the download links on the right to download the files.

Smart Glass and Windows 2018-2028: Electronic Shading and Semi-Transparent PV

Semi-transparent photovoltaic (organic PV, perovskite, TLSC, c-Si strings laminated in glass, CdTe), electrochromic, suspended particle devices, liquid crystals, transparent OLED


Show All Description Contents, Table & Figures List Pricing Related Content
The IDTechEx report "Smart Glass and Windows 2018-2028: Electronic Shading and Semi-Transparent PV" observes that electrically active see-through glass is an idea whose time is now, with applications mainly as automotive, architectural and avionic windows. Smart Glass can be capable of electronic shading (in place of blinds or a sun roof) to create peak electricity demand savings of up to 30 percent as a result of blocking entering heat. It can also be a semi-transparent PV glass for generating electricity locally in a building, or vehicle of the future. It saves space, weight and cost while improving reliability, ruggedness and the life of electrics and active optics. It makes buildings far more efficient and pleasant to use. It typically has an electrical interface and is controlled manually by the user, automatically with a sensor, a remote-control device or integrated building control system.
 
With the increasing penetration of pure EVs and hybrids in global vehicle sales, Smart Glass, with the potential to top-up EV batteries 10-15 miles per day (a commuting sweetspot), and block heat entering cars and buildings, continues to generate interest.
 
This report is intended for investors, vehicle and building designers / purchasers, developers, manufacturers and other interested parties. The topic was researched at a global level by IDTechEx analysts, and will assist those intending to manufacture, sell or use such materials and units, and the devices such as the windows and systems incorporating them.
 
The Executive Summary gives an overview of where the market and technologies are headed, including ten-year forecasts by technology and market segment (primarily architectural, automotive and avionic). It is followed by an introduction covering the needs of the primary users - the building and vehicle industries - and its progress. For example, electrically active windows started with embedded de-mister / de-icer and antenna patterns and progressed to the darken-on-demand windows popular in airliners, superyachts, premium cars and commercial buildings.
 
The sections following cover the findings of the primary market research undertaken by IDTechEx, as well as the technical details of the technologies:
  • Electronic shading: first, second and third generation electrochromic glass, Suspended Particle Devices and Non-linear Polymer-dispersed Liquid Crystals (NPDLC).
  • Conventional thin-film technologies for transparent photovoltaics like CdTe and amorphous silicon, as well as emerging technologies such as organic photovoltaics (OPV), perovskites and quantum dots and transparent luminescent solar concentrators (TLSCs).
  • OLED transparent lighting and displays - glamorous but unsuccessful as yet, and the report explains why. A host of examples of commercial products and new research breakthroughs are illustrated.
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Introduction
1.2.Types of active glass
1.3.Passive versus active smart glass
1.4.Physical principles
1.5.Main market categories, drivers and technologies
1.6.Ten year market outlook of smart glass
1.7.Volumetric market outlook
1.8.Global smart glass market in 2018 and 2028
1.9.Assumptions and analysis
1.10.Price assumptions
1.11.Drivers
1.12.Primary needs
1.13.Past forecasts from the industry
1.14.IDTechEx past forecast
1.15.Progress is being made
2.INTRODUCTION
2.1.Smart glass technologies
2.2.Temperature responsive materials
2.3.Chromogenic and Light Scattering Phenomena
2.4.Mature electrically-active glass technologies
2.5.Making transparent materials electrically active
2.6.Basic configurations
2.7.Smart glass for structural electronics
2.8.Overview of market drivers
2.9.Barriers to adoption
3.ARCHITECTURAL GLASS MARKET
3.1.Glass Windows - from structural to functional elements
3.2.Float glass markets: smart glass context
3.3.Float glass market
3.4.Building glass market
3.5.Drivers in architectural markets
3.6.Building-Integrated photovoltaics
3.7.Buildings have a major impact on energy consumption
3.8.Building-Integrated Photovoltaics
3.9.LEED certification
3.10.Combinations of smart glass
3.11.Samsung OLED window
4.AUTOMOTIVE GLASS MARKET
4.1.Glass technology for automotive and transport
4.2.Consolidation of automotive glass manufacturers in the market
4.3.The global glazing alliances
4.4.Smart glass in transport
4.5.Opportunity: smart glass in electric and hybrid vehicles
4.6.China car market dominates
4.7.Drivers and trends for automotive smart glass
4.8.Value-added features for cars
4.9.Large smart windows for autonomous buses and taxis
4.10.Smart glass to enable moving / commuter work rooms
4.11.Case-study: IFEVS solar-only microcars Italy
4.12.Electrochromic glass adoption in transport segment
4.13.Avionic electrochromic glass
4.14.Smart glass installations in aircraft
5.ELECTRONIC SHADING
5.1.Electronic shading technologies
5.2.Electrochromic glass markets
5.3.Electrochromic technology is the dominant smart glass
5.4.Technology comparison
5.5.Optofluidic Smart Glass
5.6.Electronic shading for marine applications
6.ELECTROCHROMIC GLASS
6.1.Introduction
6.2.Multi-layer structure
6.3.Basic principle
6.4.Counter electrode layer developments
6.5.List of thin-film materials
6.6.Options for transparent conducting films
6.7.Generations of electrochromic glass
6.8.Performance of electrochromic glass generations
6.9.First generation electrochromic glass
6.10.Limitations of first generation electrochromics
6.11.Manufacturing process
6.12.Electrochromic window manufacturing process
6.13.Improvements to electrochromic devices
6.14.Second generation electrochromic devices
6.15.Third generation electrochromic devices
6.16.Basic principle of third generation electrochromics
6.17.Transmittance spectra of third generation electrochromics
6.18.Third generation electrochromic devices
6.19.Institute of Science of Materials from the Autonomous University of Barcelona
6.20.Metal nanowires for electrochromic glass
6.21.Flexible electrochromic technology
6.22.Argil
6.23.Argil electrochromic glass advantages
6.24.Argil EC Film
6.25.Comparison of Argil multilayer structure
6.26.Process and value chain entry for Argil
6.27.Electrochromic glass markets
6.28.Electrochromic glass: markets, trends and applications
6.29.Electrochromic glass: markets, trends and applications
6.30.Market share
6.31.The trend for larger installations
6.32.Demand for residential projects?
6.33.Drivers
6.34.LEED certification
6.35.Annual capacity comparison
6.36.Production capacity by region
6.37.Production capacity by region in 2015
6.38.Advantages of electrochromic glass
6.39.Case study: Spirit Lake Casino
6.40.Electrochromic glass trend for aerospace
7.LIQUID-CRYSTAL GLASS
7.1.Liquid-crystal micro droplet films and glass
7.2.Multi-layer structure of liquid crystal glass
7.3.On and off states
7.4.Comparison of liquid-crystal technologies
7.5.Scienstry third generation PDLC
7.6.NPDLC non-linear refractive index
7.7.Performance improvements of NPDLC
7.8.Optical data of NPDLC glass
7.9.Applications
7.10.Price
7.11.NPDLC projects
7.12.Scienstry: Swift 141 cruise ship with NPDLC glass
7.13.Scienstry: circle-vision 350 degree display
8.SUSPENDED PARTICLE DEVICES
8.1.Suspended particle devices
8.2.Multi-layer structure
8.3.Performance
8.4.Applications and markets
8.5.Daimler: Magic Sky Control
9.SEMI-TRANSPARENT PV
9.1.Overview of technologies
9.2.PV technology overview
9.3.Emerging transparent solar technologies
9.4.Comparison of efficiencies
9.5.Case study: smartflex solar facades
10.CONVENTIONAL PV EMBEDDED IN GLASS
10.1.Solaria: basic principle
10.2.Polysolar
10.3.Market commentary
10.4.DSSC in greenhouses
10.5.LUMO technology
10.6.LUMO Si + TLSC
11.TRANSPARENT LUMINESCENT SOLAR CONCENTRATORS (TLSCS)
11.1.Solar concentrator: basic principle
11.2.Case study: Physee
11.3.Case study: noise barrier solar concentrators
11.4.University of Exeter's Solar Squared Solar Cells 2017
12.QUANTUM DOT TLSCS
12.1.Quantum dot solar concentrators: basic principle
12.2.Quantum dot solar concentrators
12.3.Quantum dot solar market
12.4.Latest review on quantum dot PV technologies
12.5.Quantum dot solar concentrators: SWOT analysis
12.6.Case study: Los Alamos
12.7.Case study: UbiQD
12.8.Case study: Solterra
12.9.Magnolia Solar Corporation
12.10.Universities of Minnesota and Milano Bicocca advance
12.11.QD Solar announcement in 2017
12.12.Thin transparent films could improve solar cells
12.13.Light-guiding solar concentrators - ITRI Taiwan
13.PEROVSKITES
13.1.Perovskites: basic principle
13.2.Perovskites have great potential
13.3.Perovskite solar spectrum
13.4.Oxford PV: tandem solar cells
13.5.Potential for perovskite PV in windows
13.6.Three in one smart window by NREL
14.ORGANIC PHOTOVOLTAICS (OPV)
14.1.OPV: basic principle
14.2.Development of OPVs
14.3.OPV has issues of price and lowest efficiency
14.4.Case-study: Ubiquitous Energy
14.5.Drivers
14.6.Case-study: Kolon Industries
15.OLED LIGHTING
15.1.Transparent OLED lighting
15.2.OLED: price outlook
15.3.OLED: Functions
15.4.Transparent OLED in vehicles
15.5.OLED Market penetration
15.6.Technology Progress
15.7.OLED Lighting Value Chain
16.SUMMARY AND CONCLUSIONS
17.COMPANY PROFILES
17.1.Argil
17.2.Brite Solar
17.3.ChromoGenics
17.4.Heliatek
17.5.Heliotrope
17.6.Kinestral
17.7.Oxford PV
17.8.Physee
17.9.Pleotint
17.10.Polysolar
17.11.Scienstry
17.12.Solaria
17.13.SolarWindow
17.14.SPD Control Systems
17.15.Sunpartner
17.16.UbiQD
17.17.Ubiquitous Energy
17.18.View Inc
 

Report Statistics

Slides 261
Companies 18
Forecasts to 2028
 
 
 
 

Subscription Enquiry