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Abstract. Small commercial Unmanned Aerial Systems (UASs), called drones
in common language, pose significant security risks due to their agility, high
availability and low price. There is, therefor, a growing need to develop methods
for detection, localization and mitigation of malicious and other harmful oper-
ation of these drones. This paper presents our work towards autonomously lo-
calizing drone operators based only on following their path in the sky. We use
a realistic simulation environment and collect the path of the drone when flown
from different points of view. A deep neural network was trained to be able to
predict the location of drone operators, given the path of the drones. The model
is able to achieve prediction of the location of the location of the operator with
73% accuracy.
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1 Introduction

The massive use of drones for civilian and military applications raises many concerns
for airports and other organizations [4]. In December 2018, for example, drones infa-
mously caused the shutdown of the Gatwick airport in the United Kingdom. This also
happened in Germany, where a drone caused the suspension of flights in Frankfurt. As
the threats that drones incur include also surveillance and active attacks, defense agen-
cies are looking for ways to mitigate the risks by locating and tracking operators of
drones [3].

A number of different sensor types are available for the detection and localisation of
drones and their operators. The most common sensor types studied by the research com-
munity used commercially are: Radio Frequency (RF) [6, 10], Electro-Optical (EO),
acoustic and radar. All the approaches that we are aware of for locating operators, not
just the drones, use RF sensors. There are automatic and semi-automatic methods for
locating the operators based on the radio communication between the drone and its op-
erator. There are a number of problems with this approach. Firstly, such methods are
usually tailored to a specific brand of drones. Furthermore, the radio signal can only
be recorded near the drone. Finally, there are ways for malicious drone designers to
apply cryptography and electronic warfare techniques to make localization by analysis
of radio signals very difficult.

In this work we propose a novel method for the localisation of UAS operators using
only the path of the drone in the sky. The approach is based on the observation that the
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behaviour of a drone in the air is visibly different depending on where the pilot is. An
experienced external viewer can usually tell if the pilots uses First-Person-View (FPV)
machinery or if they look at the drone from east or if they look at it from a distance.
We assume that the defenders are capable of tracking the path of the drone in the sky,
and show that this information is enough to gain valuable information on the location
of the operator. While the path can be measured from a relatively large distance [1], it
contains information because the operators usually react to environmental conditions
such as sun dazzle, obstructions, etc. Our experiments show that the reactions of the
operators to these conditions gives away enough information for obtaining substantial
information about the location of the operator by analyzing the path of the drone in
the sky. Note that we are not necessarily aiming for full localization in all setting, even
the ability of distinguish between three different operators, looking from three different
points of view, carrying the same known task (which is what we demonstrate in this
paper) can be useful for defenders. For example, the defenders of an airport cad use
such knowledge to block the line of sight of the pilot of an infiltrating drone. To the
best of our knowledge, we are the first to provide a data-set of flight-paths labeled with
the point-of-view of the operator and to train neural networks on such data.

2 Methodology

To allow for a controlled environment, we conducted all our experiments with a flight
simulator that provides a realistic flight experience for the operator that includes sun
gazes, obstructions, and other visual effects that produce the reactions of the operators
that allow us to identify their location. Specifically, we used AirSim (Aerial Informatics
and Robotics Simulation), which is an open-source, cross platform simulator for drones,
ground vehicles such as cars and various other objects, built on Epic Games’ Unreal En-
gine 4 [5]. AirSim provides more than 10 kilometers of roads with many city blocks. We
used it via its API that allowed us to retrieve data and control drones in a safe environ-
ment. AirSim supports hardware-in-the-loop with driving wheels and flight controllers
physically and visually realistic simulations. This allowed us to provide drone pilots
with a real remote control and a simulation of the full piloting experience, including
the artifacts that cause pilots to perform maneuvers that unintentionally disclose their
position to the defenders that watch the path of the drone.

Fig. 1. The setting of our experiments.
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As shown in Figure 1, we collected the path of the drone when flown from three
different viewpoints. Two points, marked with 1 and 2, on two opposite sides of the
intersection and a third point, marked by 3, from First Person View (FPV) where the
operator gets the perspective of a real pilot that seats aboard the drone. In all the ex-
periments the pilots were instructed to fly the drone from point A, in the middle of the
intersection, to point B, at the bottom left.

Fig. 2. A log of a flight produced by AirSim.

The results of the experiments were files, such as the one presented in Figure 2,
containing the log of the flight produced by AirSim. This simulates the data that we
expect that the defenders can collect. It contains the full path information including the
position, the orientation, and the picture of the drone in each time step. As elaborated
below, we did not always use all this information with full accuracy, because it is not
necessarily available.

Fig. 3. A comma separated file ready to be used for machine learning..

We then parsed these text files and translated them to the format shown in Figure 3
that is more amenable for efficient machine learning tasks. The data-set that we have
created is publicly available and is considered one of the contributions of this paper.
The data-set contains 81 flights, 27 from each operator location (A, B, or C). Each
flight is represented by a file with 360 features consisting of 120 (X,Y,Z) triplets, each
representing the position of the drone at a specific time along the flight. The location
of the drone was captured in 8 Hertz, i.e., we recorded an (X,Y,Z) triplet every 125
milliseconds.

3 Results

In this section we report on the main results we obtained with our experiments.
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Fig. 4. A dense neural network we used for identification of the location of the drone’s operator.

3.1 The path of the drone gives away information on the location of the pilot

We used the data-set described in Section 2 to train neural networks with different
parameters and typologies, as shown in Figure 8. The topology that yielded the best
results is built of two dense layers as shown in Figure 4. It allowed us to demonstrate
that it is possible to infer significant information about the location of the operator form
by analyzing the path of the drone.

Fig. 5. The variations of the neural networks produced by our script.
batch size. number of neurons epochs activation function Accuracy

10 80 13 relu 73.99
20 80 13 sigmoid 73.99
20 80 10 relu 73.64
10 20 10 elu 73.64
20 80 13 relu 73.28
10 20 8 relu 73.28
20 20 13 sigmoid 72.92
10 80 10 relu 72.92
10 20 13 elu 72.57
10 80 8 sigmoid 72.57
...

...
...

...
...

We repeated the training and quality measurement process many times with an au-
tomatic script that created a variety of similar models by varying the parameters of the
model shown above. We chose the variation of the model that produced the best results,
and tested its accuracy with respect to records in the data set that were not used for
training. This model was able to guess the viewpoint of the operator with 73% accu-
racy.

3.2 The orientation of the drone is not needed

Beyond location, the defender that observes the drone can also measure its Euler angles.
Because such measurements may require more expensive equipment mounted closer to
the drone, we ran experiments to measure how much this information can contribute to
the accuracy of identification of the pilot’s point-of-view.
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To this end, we extended our data-set with information about the orientation of the
drone along its flight. When trained and tested with both location and orientation data,
our neural networks achieved accuracy of 74%, which is a one percent improvement
over the accuracy we obtained with location information only. When trained with ori-
entation data only, the performance degraded a little to 71% precision. Our conclusion
is that it seems that there is no need for measuring the orientation of the drone, if this
entails costs and limitations.

Our explanation to the fact that the orientation information did not contribute much
to the accuracy of the inference is that the location and the orientation variables are
coupled. Specifically, the speed of the drone in each direction is a direct function of
the thrust of the rotors and the Euler angle that corresponds to that direction. Thus,
the location of the drone can be inferred within some error margins by integrating its
rotations on all axes. Evidently, the neural network that we have designed was able to
take advantage of these relations when we asked it to use only position or only rotation
information.

3.3 Recurrent networks are not better for the task

Since our motivation was to identify temporal patterns in the data, we thought that it
may be possible to improve the accuracy of the network in performing the required
task by applying a recurrent neural network (RNN). Such networks have a temporal
dimension so they can handle time and sequences.

Fig. 6. Recurrent neural networks that we applied.

We tried the recurrent topologies depicted in Figure 6. As shown in Figure 7, these
networks yielded only 55% accuracy. We do not know how to explain this performance
degradation.

3.4 The effect of measurement disturbances, measurement accuracy and and
sampling rate

While we ideally want to measure the a time-varying position of the drone so we can
accurately reconstruction of the signal from collected discrete data points, the sampling
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Fig. 7. Recurrent neural networks that we applied.

speed and precision of the measurement instruments can directly affect the ability to
reconstruct the signal [7]. Ideally, the measurement infrastructure captures the signal
continuously with perfect accuracy (precision and trueness). But in reality, many de-
vices sample signals discretely. And they are affected by noise. systematic noise affects
trueness, while random noise compromises precision. Clearly, the more information
about the signal we can capture with the data points, the better accuracy. Where neces-
sary, the amount of signal data can be increased by collecting more samples per unit of
time, and by improving the signal-to-noise ratio of each sample.

Figure 8 shows the trade-off between sampling rate and precision. The table shows
that, as expected, reducing the sampling frequency reduces the accuracy rather dramati-
cally. This shows that the identification of the position of the operator of the drone relies
on relatively high frequency properties of the signal, i.e., on variation of the path that
can only be detected when the position of the drone is sampled at high frequency.

Fig. 8. The effect of the sampling rate on accuracy.
Rate Time diff. Accuracy
Hz. seconds
8 0.125 73.57
4 0.25 67.5
3 0.375 60.35
2 0.5 56.07

4/3 0.75 47.28
8/7 0.875 44.64
1 1 40.71

Figure 9 shows the trade-off between the sampling precision and the accuracy of the
estimation. This data shows that our ability to estimate where the operator of a drone is
does not drop very dramatically when the location of the drone is measured with lower
precision. This indicates that the maneuvers that the network bases its estimation upon
are relatively wide, i.e., we see that the network is able to detect the differences even
with a precision level of one decimeter.

Figure 10 shows the effect of sampling disturbances on the accuracy of the estima-
tion. This data shows that event with noise that add up to 5 meters to the measurement,
the neural network is able to maintain high estimation accuracy. This data indicates that
the network is capable to ignore the distur
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Fig. 9.
Sampling precision Estimation

meters Accuracy
10−4 73.57
10−3 72.85
10−2 72.85
10−1 68.21

1 37.85

Fig. 10.
Sampling Disturbance Estimation

Uniform[0,x] meters Accuracy
0 73.57
1 67.14
5 62.14
10 48.57
15 46.43

The effect of the sampling precision on estimation accuracy.

4 Related Work

The usual way for locating drone operators is via RF techniques. Locating drone signals
can be a challenge due to the the amount of other WiFi, Bluetooth and IoT signals
in the air. Drone operation radio signal have short duration, their frequency usually
hops over most of the band and they have relatively low power. To effectively collect
these signals, network-enabled sensors must be distributed around the flight area so
the defenders can detect and locate the needed signals. For successful pinpointing of
the operator, the signals should be isolated in frequency and time. After detecting the
RC, the geolocation system must triangulate the signal using data it collects from the
sensors. Since broad scanning of all the traffic is expensive due to sensor allocation and
computational complexity, our work may complement RF based system by narrowing
the search to more probable areas based on the drone path, which is easier to follow.

Another way that our work can complement RF based technique is by the obser-
vation that there is a strong association between the maneuvers of the drone and the
command patterns sent via RF. This may allow to solve a crucial issue with RF based
techniques that have trouble identifying the signal related to a specific drone in an ur-
ban environment where many similar signals (possible, even, from other drones of the
same brand). We can train our neural networks to identify command patterns of the sig-
nal transmitted from the operator when the drone is turning, rotating, accelerating, and
decelerating and use it to connect a signal to a specific drone in the air.

Lastly, RF based techniques can only detect the antenna from which the signal is
sent. This may allow to intercept that antenna, but malicious operators can easily redi-
rect their signal to another antenna without interrupting their mission. Our technique
allows to get direct information about the viewpoint of the operators which allows more
effective interception. Even identifying that the operator uses the FPV viewpoint can be
useful, because the defenders can distract this view by clouding the area of the drone.

In the technical level, our work is also related to driver identification [9, 8, 2]. Mod-
els of driving behaviors is an active field of research since the 1950s. Because driving
consists complex actions and reactions, different driver express different driving behav-
iors in different traffic situations. These differences can be detected by observing how
drivers use the pedals, the way they use the steering wheel, how they keep their eyes
on the road, how much distance they keep from the other cars, and many other fac-
tors. There is much work on using neural networks for translating sensory data that is
easily collected while driving to an educated guess of who is currently driving the car.
This work is related to ours in that it also tries to use machine learning for inference of
hidden information from human behaviour. It is interesting to note that while recurrent
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networks are the state of the art in the domain of driver identification, we obtained better
performance with dense networks.

5 Conclusions and Future Work

Our initial results indicate that observing the path of a drone can indeed serve to identify
the location of the drone’s operator. It would be interesting to explore what additional
data can be extracted from this information. Possible insights would include the tech-
nical experience level of the drone operator, where was the drone operator trained in
flying, and possibly even the precise identity of the operator. Another direction would
be in improving the machine learning pipeline. It would be interesting to compare differ-
ent deep learning architectures, especially those tailored for the treatment of time-series
data. The data-set used for training and evaluating our models is naturally smaller than
machine-generated corpora used for other tasks such as malware classification. As such,
it would be interesting to look for a feature set which can be used as input to a classi-
cal machine learning algorithm such as KNN or SVM, which traditionally requires less
data than deep learning models.
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