

ETSI GR PDL 004 V1.1.1 (2021-02)

Permissioned Distributed Ledgers (PDL)
Smart Contracts

System Architecture and Functional Specification

Disclaimer

The present document has been produced and approved by the Permissioned Distributed Ledger ETSI Industry Specification
Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP REPORT

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)2

Reference
DGR/PDL-004_smart contract

Keywords
blockchain, policies, PDL, SLA, smart contract

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Modal verbs terminology .. 6

Executive summary .. 6

Introduction .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 Introduction to Smart Contracts ... 9

4.1 Introduction .. 9

4.2 Object-Oriented Paradigm .. 9

4.3 Properties of Smart Contracts ... 10

4.3.1 Introduction... 10

4.3.2 Immutability ... 10

4.3.3 Availability ... 10

4.3.4 Transparency ... 10

4.3.5 Self-Execution .. 10

4.3.6 Reusability .. 11

4.4 Storage .. 11

4.5 The Lifecycle of a Smart Contract ... 11

5 Smart Contracts - Lifecycle phases .. 12

5.1 Introduction .. 12

5.2 Planning Phase ... 12

5.2.1 Introduction... 12

5.2.2 Governance ... 12

5.2.2.1 Introduction ... 12

5.2.2.2 Single-party Governance ... 12

5.2.2.3 Multi-party Governance .. 13

5.2.3 Design Planning - Coding and Testing ... 13

5.2.4 Deployment Planning ... 14

5.2.4.1 Introduction ... 14

5.2.4.2 On-chain deployment .. 14

5.2.4.3 Side-chain deployment .. 14

5.2.4.4 Off-chain deployment ... 15

5.2.4.5 Immutable deployment .. 15

5.2.4.6 Terminable deployment .. 15

5.2.4.7 Upgradeable deployment .. 15

5.2.5 Draft template ... 16

5.2.5.1 Introduction ... 16

5.2.5.2 Terms negotiation ... 16

5.2.5.3 Map draft template to the machine-readable context (Compile Draft) .. 16

5.2.5.4 Draft review (reference checklist) ... 16

5.3 Coding and testing phase .. 17

5.3.1 Introduction... 17

5.3.2 Coding process .. 17

5.3.3 Testing process ... 17

5.3.4 Code/Programming language level Testing .. 17

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)4

5.3.5 Smart Contract specific testing ... 17

5.3.5.1 Open source SC analysers ... 18

5.3.5.2 Sandbox testing ... 18

5.3.5.3 Three passes .. 18

5.3.6 Validation ... 19

5.3.7 User experience testing ... 19

5.3.8 Consumer protection ... 19

5.4 Deployment and execution phase ... 19

5.4.1 Deployment... 19

5.4.2 Execution .. 19

5.4.3 Termination... 19

6 Architectural requirements for Smart Contracts ... 19

6.1 Introduction .. 19

6.2 Architectural requirements ... 20

6.2.1 Reusability .. 20

6.2.2 Self-destruction ... 20

6.2.3 Data ownership ... 20

6.3 Reference architecture .. 20

6.3.1 Introduction... 20

6.3.2 Data retrieval in Smart Contracts .. 21

6.3.3 Transactions and transaction dependencies .. 21

6.3.4 Smart Contract architecture - Without Smart Contract chaining .. 21

6.3.5 Smart Contract architecture - with contracts chaining .. 22

7 Smart Contracts - applications, solutions and needs .. 22

7.1 Introduction .. 22

7.2 Applications ... 23

7.2.1 Introduction... 23

7.2.2 ICT Sector ... 23

7.2.3 Automated machines/sensors .. 23

7.2.4 Automated auctions/sales ... 23

7.2.5 Mechanism for access control/certification authority ... 23

7.3 Solutions ... 25

7.3.1 Introduction... 25

7.3.2 Scalability ... 25

7.3.3 Check-point... 25

7.3.4 Extensibility .. 25

7.4 Security of contracts ... 25

7.5 Example: Smart Contracts with QoS monitoring ... 25

7.6 Needs - Requirements to build a viable system with Smart Contracts ... 27

7.6.1 Regulatory aspects .. 27

7.6.2 Security of the contracts ... 27

7.6.3 Secure data feed (oracles) ... 27

7.6.4 Enforceability ... 27

7.6.5 Availability ... 27

7.6.6 Attacks .. 28

7.6.6.1 Re-entrancy ... 28

7.6.6.2 Free option problem .. 28

7.6.6.3 Denial of capacity attack ... 28

8 Threats and limitations of Smart Contracts .. 28

8.1 Introduction .. 28

8.2 Inter and intra system threats .. 28

8.2.1 Introduction... 28

8.2.2 Absence of termination clause/self-destruction .. 29

8.2.3 Admission control ... 29

8.2.4 Off-chain and side-chain contracts handling... 29

8.2.5 Poor exception handling ... 29

8.2.6 Transparency of a PDL ... 29

8.2.7 External libraries ... 30

8.3 Limitations ... 30

8.3.1 Introduction... 30

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)5

8.3.2 Occupancy .. 30

8.3.3 Latency ... 30

8.3.4 Underlying and Relying ledgers in permissioned context .. 30

8.3.5 Not every term can be translated to a Smart Contract .. 31

8.3.6 Legal uncertainty .. 31

8.3.7 Intellectual property rights .. 31

8.3.8 Accountability in smart contracts ... 31

Annex A: Change History ... 32

History .. 33

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)6

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group (ISG) Permissioned Distributed
Ledger (PDL).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document specifies a high-level functional abstraction of PDL Smart Contract System Architecture. In
particular, basic building blocks for designing, coding and testing Smart Contracts for the PDLs. This includes
describing how different classes of systems interact with Smart Contracts. Processes, models, and detailed information
are beyond the scope of the present document.

Introduction
The present document defines a high-level functional abstraction of policies to design and code Smart Contract
components. Smart Contracts are mere codes, and if not well planned, designed, coded and tested can leave the system
vulnerable to external attacks and internal errors.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)7

1 Scope
The present document specifies the functional components of Smart Contracts, their planning, coding and testing. This
includes:

a) reference architecture of the technology enabling Smart Contracts - the planning, designing and programming
frameworks;

b) specify how to engage using this architecture - the methods and frameworks the Smart Contracts building
blocks possibly communicate;

c) point out possible threats and limitations.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ACM Digital Library: "Securify: Practical Security Analysis of Smart Contracts".

NOTE: Available at https://dl.acm.org/doi/pdf/10.1145/3243734.3243780.

[i.2] ACM Digital Library: "SmartCheck: Static Analysis of Ethereum Smart Contracts".

NOTE: Available at https://dl.acm.org/doi/pdf/10.1145/3194113.3194115.

[i.3] ITU-T Report: "Distributed Ledger Technologies and Financial inclusion".

NOTE: Available at https://www.itu.int/en/ITU-T/focusgroups/dfs/Documents/201703/ITU_FGDFS_Report-on-
DLT-and-Financial-Inclusion.pdf.

[i.4] ETSI GR PDL 003: "Permissioned Distributed Ledger (PDL); Application Scenarios".

NOTE: Available at https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=57511

[i.5] United Nations Commission on International Trade Law.

NOTE: Available at https://uncitral.un.org/

[i.6] Decentralized Public Key Infrastructure.

NOTE: Available at https://medium.com/hackergirl/decentralized-public-key-infrastructure-4e7ea9173bac

https://dl.acm.org/doi/pdf/10.1145/3243734.3243780
https://dl.acm.org/doi/pdf/10.1145/3194113.3194115
https://www.itu.int/en/ITU-T/focusgroups/dfs/Documents/201703/ITU_FGDFS_Report-on-DLT-and-Financial-Inclusion.pdf
https://www.itu.int/en/ITU-T/focusgroups/dfs/Documents/201703/ITU_FGDFS_Report-on-DLT-and-Financial-Inclusion.pdf
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=57511
https://uncitral.un.org/
https://medium.com/hackergirl/decentralized-public-key-infrastructure-4e7ea9173bac

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)8

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

coin: implementation using a unique ledger and usually used for financial transactions (e.g. Ether, Bitcoin)

eternal contracts: contracts which are active for infinite time

mainnet: ledger in-production

NOTE: The contracts and transactions on a mainnet are ultimate.

master-chain: primary chain where the executions of the Smart Contract are recorded

off-chain smart contract: smart contracts stored away from the ledger (i.e. trusted database or side-chain) and their
execution may depend on on-chain contracts (i.e. on-chain contract can initiate off-chain contracts) and later the state
can be updated

on-chain smart contract: contract that resides in the master-chain and on side-chain, that is executed directly without
the instantiation of any other contract

NOTE: The beneficiaries get rewarded as soon as the contract is executed without the involvement of any other
contract.

participants: participants are the members of the PDL which keep the copy of the ledger and take part in the consensus

Ricardian contract: single contract document which is both easily readable by human and machines and not
self-executable

NOTE 1: It is formatted as a text file and digitally signed by the issuer of the contract.

NOTE 2: The security of a Ricardian contract is achieved by OpenPGP and all the signing keys are included within
the contract so eliminates the use of external certificate authority, in other words a Ricardian contract
carries its own PKI with them.

NOTE 3: The Difference between Ricardian contract and Smart Contract: The major difference between the Smart
Contract and the Ricardian contracts is that Smart Contracts are executable code but Ricardian contracts
are the agreements recorded in a single file and not executable on their own. A Smart Contract does not
have to be a Ricardian contract and a Ricardian contract is not a Smart Contract, but a Smart Contract can
execute a Ricardian contract.

side-chain: chain(s) which work as a secondary chain to the main-chain/ledger

NOTE: It can be used to off-load some of the computations for scalability or privacy.

Smart Contract (SC): computer program stored in a distributed ledger system, wherein the outcome of any execution
of the program is recorded on the distributed ledger

NOTE: A Smart Contract might represent terms in a contract in law and create a legally enforceable obligation
under the legislation of an applicable jurisdiction. A Smart Contract may but does not have to be human
readable and is self-executable. Any executable code stored on a PDL is dubbed a "Smart Contract" (SC).

 The focus of the present document is Smart Contract as software codes and is different from legal
contracts.

stakeholders: parties that benefit from the PDL

NOTE: All the stakeholders may or may not keep the copy of the ledger (i.e. act as a node) and take part in
consensus.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)9

testnet: ledger or sandbox on which Smart Contracts can be installed to test their working and performance prior to
installation on a mainnet

NOTE: Testnets are installed to test the performance of the code and the transactions and Smart Contracts are for
the testing purposes only.

Table 3-1: Comparison of Ricardian and Smart Contract

Contract Type Machine-Readable Human-Readable Self-Executable
Ricardian Contract Yes Yes No
Smart Contract Yes Optional Yes

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
DLT Distributed Ledger Technology
ETSI European Telecommunications Standards Institute
GDPR General Data Protection Regulation
ICT Information and Communications Technology
ITU International Telecommunication Unit
PDL Permissioned Distributed Ledger
QoS Quality of Service
SC Smart Contract
SLA Service Level Agreement
TEE Trusted Execution Environment
UNCITRAL United Nations Commission on International Trade Law

4 Introduction to Smart Contracts

4.1 Introduction
A Smart Contract is a computer program deployed on a PDL. The primary purpose of smart contract to keep certain
software in a PDL that execute on certain execution requests.

Any PDL's general goal is the distributed management of a common data repository defining a current global state;
there is no assumption on the type of data stored. When such data is an executable code (i.e. smart contracts), the
induced global state can be seen as the state of a distributed virtual machine.

4.2 Object-Oriented Paradigm
Historically, the main model adopted for SCs has been along the line of the traditional Object Oriented paradigm. As
such, a SC is seen as a code entity composed of two main clauses:

• Internal storage, in the form of identifiers - value associations akin to a dictionary, similarly to object fields.

• Functions' definitions, specify the set of actions allowed for the given SC with the appropriate scope modifiers,
similarly to object methods.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)10

Similar to the concepts of Object-Oriented programming a Smart Contract is instantiated from a class, and once
instantiated holds a unique identifier; that is to say every instantiation is unique. The deployed Smart Contract holds a
global state which means that all its fields and functions become visible and callable by other contracts (depending on
access rights). Moreover, a deployed Smart Contract can be called as many times as required; however, this is
dependent on the implementation.

Smart contracts have different implementations depending on the technology and consensus mechanism such as PDL
types (e.g. Hyperledger, Quorum)

4.3 Properties of Smart Contracts

4.3.1 Introduction

The properties of Smart Contracts directly depend on the properties of the underlying PDL and some properties due to
their requirements.

4.3.2 Immutability

As any data on a PDL, an SC is immutable; this means that a Smart Contract code, once accepted through consensus,
cannot be changed. However, modifications through other methods such as proxy contracts or introducing a new Smart
Contract, are possible. In such an event, the old version of the contract remains in the chain. A consequence of
immutability is Importability which means that it cannot be deleted from the ledger after deployment. This brings the
challenges of scalability as a PDL might be populated with dormant contracts over time. The details on scalability are
discussed in later clauses.

The values contained inside an SC's internal storage are mutable as expected through function calls; for example, in an
auction contract bid values will change with new bids but the final winning bid may be immutable.

4.3.3 Availability

In the case of on-chain SC, it is always available as long as the underlying master ledger is accessible. This means that a
SC function can be invoked, and its fields (i.e. variables) can be read, by an entity as long as the entity has the
appropriate privileges specified by the contract and the PDL. However, in the case of off-chain Smart Contracts, if the
ledger where the contract is installed (i.e. secondary PDL) is not available, the SC is not accessible by the master PDL.

4.3.4 Transparency

Any entity, with the appropriate privileges, might inspect a SC code and current values. As such, it is transparent to all
intended participants of the PDL. Transparency is not to be confused with immutability; a contract code remains
unchangeable even though it is transparent to both parties.

Moreover, any call to a function of a contract is performed through a general state update on the PDL (i.e. transaction).
As such, all function calls are recorded in the PDL and traceable by the members of the PDL with appropriate access
rights.

4.3.5 Self-Execution

Any execution of a SC, i.e. an invocation to one of its visible functions, is performed by the PDL nodes, not by the user
invoking the SC, nor by the SC creator. The SC execution is protected by the distributed consensus of the PDL; as such,
it is beyond the control of any single party to execute a Smart Contract without the approval of PDL members. This
property induces the sub-properties of:

• Atomicity: an SC invocation runs entirely or fails without affecting the state (i.e. there is no such thing as
partial SC execution).

• Synchronicity: an SC invocation is executed in a synchronous way (i.e. every member with appropriate access
rights get the update).

• Determinism: an SC invocation returns the same result for any node executing it.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)11

4.3.6 Reusability

SCs are coded once and can be executed multiple times depending on PDL governance. A given Smart Contract can be
used as a template for a wider set of applications sharing the same high-level logic. The actual behaviour of a given
contract may change depending on the parameters which are set at invocation time. For example, the SC for cellular
service is modelled with required fields for QoS metrics such as latency; all the telecom operators, in this case, will be
required to specify the latency as a parameter.

4.4 Storage
Smart Contracts are typically stored in distributed ledgers; however, their storage depends upon the nature of the ledger
architecture. For example, in case of a permissionless blockchain such as Ethereum, a Smart Contract will be stored by
all nodes; on the contrary, in a permissioned blockchain such as Hyperledger, Smart Contracts are stored only on the
nodes that are part of a given channel (an abstract point-to-point link between nodes) and are established through
communication between nodes.

For off-chain SCs, the contracts may be stored on a trusted data storage, away from the ledger. This type of storage
mechanism needs special security measures set out by the governance of the PDL.

Reusability techniques such as template contracts can be used to allow efficient storage of the contracts. The decision of
storage is dependent on the implementation of a PDL, and the technology the companies adopt. The limitations due to
the external existence of a contract is discussed in clause 8.

4.5 The Lifecycle of a Smart Contract
A Smart Contract is a computer program; the difference is that the Smart Contracts are immutable, so it requires great
care to program them and is good be tested on several levels before deployment. This clause presents the recommended
lifecycle, a Smart Contract may follow in order to avoid the dangers such as erroneous code. This recommended
lifecycle consists of three phases: planning phase, coding & testing phase and deployment & execution phase. The
phases are explained in detail in clause 5.

Figure 4-1: Lifecycle of a Smart Contract

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)12

5 Smart Contracts - Lifecycle phases

5.1 Introduction
Smart Contracts are software codes similar to any other software program. The difference from usual software is in the
way the bugs are being fixed. The nature of PDL, does notallow backward modification of information or code so any
change to Smart Contract can only be applied to the time of deployment and onwards.

Hence, careful planning and scrutiny of the code before deployment to the ledger is of utmost importance. In this
clause, the stages of the Smart Contract lifecycle (Figure 4-1) are defined, which the industries may follow to
implement Smart Contracts in the adopted PDL.

5.2 Planning Phase

5.2.1 Introduction

A Smart Contract can be deployed in many ways, and the deployment methods are dependent on the underlying ledger
technology and acceptable by the participants through consensus. The goal is to create a contract that can be trusted by
participants who do not trust each other. The planning of a Smart Contract will enable the participants to define their
requirements and functionalities of a Smart Contract. The planning phase may include:

1) governance - ownership and access rights;

2) design - coding and testing;

3) deployment; and

4) management planning.

5.2.2 Governance

5.2.2.1 Introduction

A Smart Contract may define a contract, and its associated terms and conditions covering the full lifecycle of the
contract, between the participants. Governance planning defines the authority of different stakeholders over the
contract, for example, ownership and access rights.

Usually, the creator of a contract is the owner as well; the owner of the contracts has exclusive privileges such as
contract destruction. However, in PDLs where contracts can be reused by several participants for several unrelated
transactions, it is feasible to have a role-based ownership mechanism. In Role-Based ownership, the operations of a
contract are governed by a group of participants with appropriate privileges; as PDL is a collaborative ledger, these
privileges can be specific to a contract.

5.2.2.2 Single-party Governance

The Smart Contract, when deployed, is usually identified as being governed by a specific part (N=1) or a group of
distinct parties depending on consensus and governance model.

This agreement needs to take into account the legal and business aspects of the Smart Contract, and address issues such
as who is eligible to stop, terminate, or upgrade the Smart Contract, and how these are enforced contractually or
technically.

Smart Contracts are a digital model of such contracts, and actors and their arrangements are beyond the scope of the
present document.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)13

5.2.2.3 Multi-party Governance

A Smart Contract may be developed for N-M interaction, i.e. one-to-one, one-to-many, many-to-one or many-to-many
interactions. For example, if the contract is governed by more than one party, a consortium agreement needs to be
formulated within that group to outline the governance model that is applied to the Smart Contract. Moreover, a
contract may be managed by a third-party such as some stakeholders which are not directly involved in the contract.

For multi-party governance, this requires decisions on the technical implementation aspects of:

• From whom will Smart Contracts accept the operational decisions, and how? Since in this scenario, a
Smart Contract is governed by multiple stakeholders, it is likely that some of the authorized
parties/stakeholders may disagree with some decisions such as termination of a contract. In such cases, multi-
signatures and voting mechanisms can be used to approve/reject a transaction.

- In multi-signatures, group members sign a decision that is communicated to a Smart Contract and
verified.

- Another option is to use voting, in which case action is initiated, but the Smart Contract requires
different parties to individually endorse the action (or reject it) within a time limit.

• How are the governing parties recognized by the Smart Contract? Depending on the ledger, this may be
an organizational identity within the ledger, or an account owned by the party (e.g. a public key).

• What are rights each governing entity has? It is possible that some ledgers do not allow some actions, such
as contract stop and resume, termination, contract upgrade, changes in governing party identities, and any
other business-specific actions.

• How are Smart Contracts upgraded? If the Smart Contract can be upgraded, either via the ledger's native
support (e.g. in Hyperledger Fabric, using versioned chain code), or via development techniques (e.g. proxy
contract), the process of upgrade needs to be managed. This may need communication with the users of the
Smart Contract as with any software release management process. If the Smart Contract is governed by a
group, it is important that the group coordinate for the upgrade using the appropriate technical means.

5.2.3 Design Planning - Coding and Testing

In this stage, the stakeholders may list the coding and testing strategies and resources, they may require for later stages
of coding and testing. The strategies and resources may include the following:

• Choice of programming languages.

• Choice of testing environment.

• Resources required for coding and testing such as developers and development tools.

The coding and testing phase detailed in clause 5.3.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)14

5.2.4 Deployment Planning

5.2.4.1 Introduction

Smart Contracts can be deployed on the master-chain, side-chain or off-chain depending on the planning and
requirements of the organizations. For example, if two companies are willing to run a business contract that may stay
exclusively between them, they can have a side-chain with Smart Contracts deployed there and make appropriate
selective updates to the main-chain such as contract start and termination dates without the details of the contract.

Table 5-1: Explanation of master-chain, side-chain and off-chain Smart Contracts

Consideration Master-chain Side-chain Off-chain
Contract-type Contract,

Address of
Contracts on
Side-Chain and/or
Off-Chain

Contract

Contract

Scalability Limited Limited High
Security High Limited Requires off-chain

security measures
Immutability High Ledger-

dependent
Limited

Eternity High Ledger-
dependent

Limited

Risks Low Medium High
Storage-
requirement

Local Can be distributed Does not need to
be shared

Speed Medium Slower Faster
Dependency None Ledger and

governance
dependent

Ledger and
governance
dependent

Parallelization Ledger-
dependent

Ledger-
dependent

Governance
dependent

In the following clauses, the possible methods of deployment are discussed.

5.2.4.2 On-chain deployment

This is the simplest method for deployment of Smart Contracts and the contracts are stored directly in the ledger, which
can be a master-chain, a side-chain or an off-chain. The advantage is that the customers do not have to rely on any other
side-chain or off-chain (which may require additional resources) and it is best for a system managed by a single entity.
Since all the full contract codes are stored in a single chain, in long-term scalability can be a problem.

The simplest deployment model is where the Smart Contract is never terminated. In some ledgers, a Smart Contract can
always be removed, while in other ledgers this decision can be built into the Smart Contract at development (i.e.
self-destructible clauses) or deployment time (i.e. by choosing to include or omit a "termination" mechanism
self-destructible clause are discussed).

5.2.4.3 Side-chain deployment

In this method, the main logic of a contract is stored in a side-chain and only some indication of that contract (such as
hash or address) is stored in the master-chain. The advantage of this technique is that, since it is not required for a
full-contract code to be in the master-chain, this technique is scalable.

Additionally, the side-chain contract address in the master-chain can be updated by the owner of the contract through a
transaction with no additional means. The danger in this type of deployment is that, if the side-chain contract is not
self-destructive, it can stay forever and can be callable by other contracts, also as it is in the chain (no matter if the chain
is side-chain) it occupies storage.

Side-chain Smart Contracts can be reused by other users of the PDL (delegated by the owner of the contract).

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)15

Figure 5-1: Master-chain and side-chain Smart Contracts

5.2.4.4 Off-chain deployment

In off-chain deployment, Smart Contracts are stored away from the ledger and may be in a trusted data structure. The
indication of the presence of contracts such as invocations are only recorded in the master-chain or a side-chain.
Off-chain deployment possess risk of trust and rely on security of the database where the contracts are stored. The
major advantage of an off-chain deployment is this technique is scalable since only the invocations are stored in the
PDL. Since off-chain deployment does not depend on any specific PDL, such contracts can be ported to other PDL
types with relative simplicity.

5.2.4.5 Immutable deployment

There are methods by which Smart Contracts' immutability can be managed. This is typically done at the deployment
stage. Some of immutability management techniques may be available natively in a specific ledger, and for other
ledgers, this may require the use of programming techniques such as call delegation across contracts. Immutability as a
property is discussed in clause 4.3.2.

If the ledger has immutable Smart Contracts, this governance model is recommended to be encoded within the Smart
Contract during the contract planning. This is intended to stop later changes.

5.2.4.6 Terminable deployment

A Smart Contract may be terminated, i.e. permanently disabled, if the ledger or the Smart Contract itself directly
supports this mechanism. A PDL is typically immutable so that Smart Contracts, but some ledgers may allow the
contracts to be terminated and is dependent on the governance and the consensus of the under-lying ledger. Details of
the multi-party contract is discussed in ETSI GR PDL 003 [i.4].

5.2.4.7 Upgradeable deployment

Some ledger technologies support upgrades to an existing Smart Contract, i.e. changing the Smart Contract's operational
code. This typically happens by installing a master contract with a mutable field similar to passing an argument to a
function. This argument acts as a pointer to another contract which carries the actual operational code. This type of
deployment is useful when upgrades of a contract are needed. However, in this case, the problem of scalability exists
because the old contracts may not be deleted and stay in the ledger as a dormant contract.

If the Smart Contract can be upgraded, either via the ledger's native support (such as in Hyperledger Fabric, using
versioned chain code), or via development techniques (proxy contract), the process of upgrades needs to be managed.
This may require communication with the users of the Smart Contract as with any software release management
process. If the Smart Contract is governed by a group, the group may coordinate the upgrade using the appropriate
technical means.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)16

5.2.5 Draft template

5.2.5.1 Introduction

In the future, the PDL technology is envisioned to be used widely for all kinds of business transactions. Therefore,
before the planning and coding process begins, a Smart Contract can be drafted electronically or manually. At this
initial stage, some or all of the stakeholders can decide together with their requirements such as code and resources
requirements. This step facilitates the smooth and error-free coding of a contract.

5.2.5.2 Terms negotiation

Once the draft of requirements is ready, the terms and conditions between the stakeholders can be decided and agreed. It
is particularly important in a Smart Contracts because in traditional manual contracts, there may be a freedom of
amendment at any time, whereas Smart Contract by-design do not typically have such freedom. At the same time, it is
important that all stakeholders agree on terms of the entire deliberation so that there is no conflict in the future.

The terms and conditions will be varied from organization and its governance, but questions such as deployment
management and lifecycle of a Smart Contract can be addressed.

Some of the important points that may be a part of the negotiation of the terms are:

1) Is the Smart Contract going to on-chain or off-chain?

2) If participants want to maintain a side-chain, who will be participants and their role?

3) For how long the side-chain will be active?

Especially in situations where contract can be stopped and resumed, terminated, or upgraded, the multi-party
governance agreement may take into account who has the authority to issue these operations.

Depending on the capabilities of the ledger itself some of these policy decisions may be part of the ledger itself; in other
cases, these decisions may be encoded into the Smart Contract and defined in design phase already.

5.2.5.3 Map draft template to the machine-readable context (Compile Draft)

This step provides the bridge between the draft template and the coding phase and involves the procedures in mapping
the draft contract (from draft template clause 5.2.5) to a Smart Contract which is the technical representation of the
same. This step not to be confused with "Compile" in the context of programming and only harmonises the template
and coding steps.

This step can specify the complete supervisory level specifications such as underlying ledger technology to be used and
the stakeholder needs.

5.2.5.4 Draft review (reference checklist)

The last step of the planning phase to review and verify the complete planning phase. The reference checklist may
include:

1) All the stakeholder requirements are listed in the draft.

2) The planned hardware and software resources such as PDL are acceptable and reachable to all of the future
nodes (i.e. participants).

3) All the functions are mapped accurately to the requirements.

4) The governance of a contract is clearly documented and part of the draft template (clause 5.2.5).

5) The contract is planned in accordance with the standardization body guidelines.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)17

5.3 Coding and testing phase

5.3.1 Introduction

As soon as the contract plan is in place, the next step is to code it. This clause will cover the coding and testing phase of
a Smart Contract and discuss the steps which can help industries produce viable contracts.

5.3.2 Coding process

The coding language decision is dependent on the underlying PDL type. Some of the PDLs may allow different
languages for the Smart Contract coding, but some are very specific to this. Where there is freedom provided by a PDL
type to use multiple languages, the widely used language may be adopted as they are better understood by the
programmers and may have more tools available for testing and bug fixing.

5.3.3 Testing process

A Smart Contract may go through a comprehensive testing process to avoid erroneous contracts being deployed.
Several steps can be part of this process, depending on the priority of organizations. A recommended testing flow is
shown in Figure 5-2.

Figure 5-2: Smart Contract testing process

5.3.4 Code/Programming language level Testing

The Smart Contracts' testing varies from traditional software testing in several ways.

Traditional software mostly has freedom of revision. When needed, it goes through regular updates, software revisions
and patches to remove bugs. Smart Contracts are deployed on PDLs; this means all the nodes carry a copy of the same
contract and execute as required. Also, any syntax or logical error will be replicated to all of the nodes, and it is
impossible to fix such errors once the contract is deployed in the PDL. Such errors can be avoided by traditional
language-specific software testing mechanisms. Programmers can ensure that a contract is error-free and carry out all
necessary tests in a test environment before deployment.

5.3.5 Smart Contract specific testing

Smart Contract testing is different from code-level testing, as this level of testing ensures a safe and manageable Smart
Contract. Smart Contracts are typically auto-executable, and their termination is difficult; hence it is important to
consider following while testing a Smart Contract.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)18

5.3.5.1 Open source SC analysers

A number of open-source SC analysers such as Securify [i.1] and SmartCheck [i.2] are available to analyse the SC code
and tag the vulnerabilities present in the program. These vulnerabilities, such as uninitiated functions can provide
third-party (possibly malicious) access to a contract, thus to the ledger. These analysers prevent external accesses by
inspecting the code and flagging the possible vulnerabilities in the code. However, all the analysers have their
limitations such as they support certain ledger technology or programming language. Also, the attacks on the contracts
are evolving; hence more comprehensive scrutiny of the contracts can be achieved by multiple analysis techniques.
Another important consideration for an analyser is the support for a PDL type, most of the available analysers are for
Ethereum and Hyperledger and the adopters of the other ledger types can look for their respective PDL supported
analyser.

5.3.5.2 Sandbox testing

A PDL is a group of nodes, and erroneous Smart Contracts can be harmful to all of the nodes. A Sandbox testing
mechanism is useful before the execution of a Smart Contract on an in-production PDL to ensure safe and error-free
contracts. Sandboxes are specific to the ledger type and can be local or distributed.

Local Sandbox:

• A local copy of ledger can be used as a sandbox, and sample contracts can run several times to verify the
output. A disadvantage of local testing is that it may not give realistic latencies for execution and deployment.
A solution for this can be a distributed full-scale Test-net.

Distributed Sandbox/Test-net:

• A solution for limitations of local sandbox can be a permanent a sandbox between the nodes or a Test-net,
which serve as the testing ground only and all the Smart Contracts deployed there may not be considered as
valid; to enable scalability in such sandboxes, they can be deleted after a certain time to free storage.

5.3.5.3 Three passes

It is recommended that nodes run their pre-tests before sending the deployment transaction. These pre-tests are specific
to the use-case and the PDL type. For example, in a token contract, the address of the payee is important to be included
in the contract, and for the asset trail contract, the change of ownership is an important parameter. Here, three reference
passes for a contract are highlighted, stakeholders may look for, before deployment of their Smart Contract:

• Execution clauses:

A contract is executed with certain predefined conditions which can be internal such as start time or external
such as an API call. Hence, it is important to have the execution clauses in a contract clearly defined, as its
absence will make the contract dormant. Moreover, the presence of unintended conditions can open backdoors
in a contract and to be avoided.

• Penetrable clauses:

 The clauses that invoke the critical parts of the contracts such as payment remittance may be accessed
exclusively by the owner or the authorized member of the PDL. Moreover, all the entry points to the contract
can be examined to prevent unauthorised access. Hackers usually exploit such loopholes or openings to gain
access to the contracts.

• Termination clauses:

 Smart Contracts by-definition cannot be destructed but become inactive. Termination clauses allow the
contract to stop its execution and become inactive; this prevents the ledger from having eternal contracts.
Moreover, after a specific time, a contract may be self-destructible to avoid outdated versions of the contracts
and allow the modified new versions.

It is be noted here that Smart Contracts vary in certain ways from legal contracts which cannot self-destruct but may
include clauses after which those contracts become ineffective.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)19

5.3.6 Validation

The Smart Contract may be the exact and true representation of the natural language contract and perform only the tasks
specified there. In other words, semantic gaps between the expected and the actual execution are important to be
eliminated to avoid the wrongdoings of a contract and implement an error-free code. The semantic gaps can be checked
at Level 3 of the testing process (Figure 5-2).

5.3.7 User experience testing

A group of users can test a Smart Contract on a sandbox. Their feedback will help in two ways:

1) the future users of the product can comment on the quality of the contracts and future development; and

2) identify the errors and semantic gap in the contracts.

5.3.8 Consumer protection

It is recommended to exercise the disclosure of minimum terms and conditions to transfer liability from the developers
to the user. The user may take full responsibility for the protection of sensitive data such as keys as leakage of
information can put other PDL members' data at risk.

5.4 Deployment and execution phase

5.4.1 Deployment

Smart Contracts by-design once deployed cannot be changed or amended. Hence, extensive emphasis on careful
planning and design has been placed on the earlier stages. In the deployment stage, the contract is installed on a PDL,
and it particularly involves the stakeholders such as a mobile operator and a tractor vendor, who agreed on a contract for
network services. This stage may not necessarily involve the developers as the deployment can be straightforward if the
earlier steps are carried out correctly, and the pre-tested template of a required contract is available.

5.4.2 Execution

Deployed contracts can be executed unlimited times (depends upon the under-lying PDL type) during the execution
phase. The execution of a Smart Contract can be parameterized, and non-parameterized depends on the design model
and can be performed by any authorized party through an API. Rest APIs can be used here, and the payload can be
implementation-dependent.

5.4.3 Termination

Smart Contracts are recommended to be terminated exclusively, or they may be self-destructible after certain a time as
may contain critical conditions such as pay-outs. In this case, if a dormant contract exists in a ledger can be exploited by
the adversary. The termination of the contract can be done by the contract itself (i.e. destroys itself) or through an API
handled exclusively by the stakeholders through the digital-signature mechanism, to ensure security. The termination
may exclusively be performed by the owner of the contract, and it is possible that instantiation of one contract
terminates the older one.

6 Architectural requirements for Smart Contracts

6.1 Introduction
Smart Contract depends on the PDL type, and their architecture is also dependent on the PDL support. The careful
design of the internal architecture of Smart Contracts is important to design a safe and scalable Smart Contract. In this
clause, the architectural requirements for a viable Smart Contract are discussed.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)20

6.2 Architectural requirements

6.2.1 Reusability

Since a Smart Contract is a software that can live forever in a PDL, its architecture may be able to provide flexibility for
reusability; that is to say, a contract may be generalized enough to be used multiple times. In a Smart Contract, key
parameter such as start date, end date, and beneficiary information can be specified to allocate a Smart Contract to
several users.

The reusability can prevent the dormant contracts and the PDL being populated, thus helps in scalability.

6.2.2 Self-destruction

As discussed in clause 5, Smart Contract may be destroyed or terminated after some time to avoid dormant or eternal
contracts. However, some contracts are not suitable to be destroyed or terminated completely. For example, contracts
with some monetary value cannot be terminated because their destruction will cause the customers to lose funds.
However, if a contract is some kind of agreement, for example, an agreement between a user and their network service
provider, it can include the self-destructive clause.

Self-destruction may have two substates:

1) End of use

2) Management removal, or achieving, if the self-destruct clause allows this. This may run:

a) On time-out.

b) On periodic heartbeat.

c) On explicit management action.

6.2.3 Data ownership

A Smart Contract may comply with GDPR requirements and keep public data only. If a Smart Contract wants to access
or keep the private data (i.e. under certain licensing restrictions), the governance of the PDL may take and record
appropriate permissions from the owner of the data.

6.3 Reference architecture

6.3.1 Introduction

Smart Contract development may go through three different processes:

1) logic - in which the original purpose of a Smart Contract is defined;

2) algorithm - the code logic and the interpretation of logic to execution; and

3) code - the final code which is a true representation of the initially planned logic.

In Figure 6-1, these processes are illustrated.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)21

Figure 6-1: Processes of a Smart Contract

6.3.2 Data retrieval in Smart Contracts

A Smart Contract may retrieve data from external sources such as oracles through an API. This access can be in
compliance with the governance of the PDL and the country laws such as GDPR.

As discussed in clause 6.2.3, the data added to this Smart Contract may comply with GDPR - the Smart Contract can
keep only public data - private data, if added, is informative and comply with regionally agreed and national
regulations.

6.3.3 Transactions and transaction dependencies

A Smart Contract deployment and execution creates a transaction which is recorded in the PDL.

It is possible that a Smart Contract transaction is initiated by other Smart Contracts; that is to say that a Smart Contract
execution is dependent upon certain prerequisite state of another Smart Contract and triggered by them. Here is some
consideration to be taken care of, such as the latency of prerequisite Smart Contracts may delay the execution of future
contracts.

The transaction ordering for a Smart Contract is important to be defined in the consensus of the corresponding PDL. It
is recommended to adopt specific ordering of transaction inside the base contract (i.e. the contract which will initiate the
chain of contracts) to avoid transactions being rejected and cause clutter in the ledger because even the rejected
transaction is recorded. Additionally, an appropriate delay may be added to call the next contracts; this approach can
mitigate the problem of latency and provide sufficient time for earlier contract transactions to complete their execution.

6.3.4 Smart Contract architecture - Without Smart Contract chaining

Following reference architecture defines a Smart Contract with recommended processes. Organizations may choose
their own variations depending on the PDL type and requirements of the use-case and may consider this as an initial
design.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)22

Figure 6-2: Reference Architecture of a Smart Contract without contract chaining

6.3.5 Smart Contract architecture - with contracts chaining

Figure 6-3: Reference Architecture of a Smart Contract with contract chaining

7 Smart Contracts - applications, solutions and needs

7.1 Introduction
Smart Contracts and their properties can be useful in many applications. Smart Contracts can be applied in any DLT
scenario where an automated and transparent contractual mechanism is required. However, the limitations and
implications of adopting a Smart Contract based solution may be considered. In this clause, some of the possible
applications and limitations of Smart Contracts are highlighted along with potential solutions.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)23

7.2 Applications

7.2.1 Introduction

Smart Contracts can potentially be a viable solution for applications where transparency and immutability are a priority.
They provide a mechanism to automate the contractual process, track the contract executions, and provide
accountability in the contractual process. There are several ways and solutions where Smart Contracts can be applied to
achieve the goals mentioned above, and some of them are highlighted here.

7.2.2 ICT Sector

In the ICT sector, there are a number of ways a digital service provider and a customer (business or individual) engage
in contracts. For example, Home mobile provider and Visited mobile provider have contracts for roaming services; the
services consumed by the customer in the visited location is recorded and sent by the visited provider to the home
provider. Smart Contracts can automate this procedure by enabling service providers to create Smart Contracts for such
digital services; as soon as the visiting customer consumes the network services of the visited operator, the
corresponding Smart Contract is activated and enables instant settlement between the host and the visited provider
including the availability of the credit and payments.

Furthermore, mobile operators may not offer the same consistent performance; factors such as congestion in the area
and day/time impact the performance [i.3]. This may result in a violation of the SLA between the user and the service
provider. In situations where the mobile operators cannot provide the required QoS, possibly due to the congestion,
customers may consider getting the services from other operators who offer a service guarantee. These provisions need
automaticity and transparency. The customer wants to get the services instantly and automatically. In the scenarios
where QoS is of paramount importance (e.g. services for life-relying activities such as remote surgery), strict SLAs are
expected be honoured, and if the violation happens, the customer is notified (Transparency) and potentially
compensated. Smart Contracts can help to achieve these targets and provide a contractual framework in an untrusted
environment. This is achieved through logging of SLA and performance data on a PDL, and applying a Smart Contract
to calculate the actual performance against the targets and automatically calculate the penalties according to the SLA
where applicable, penalties can be automatically reduced from the invoice on the next billing cycle.

7.2.3 Automated machines/sensors

Automated machinery such as tractors and solar farms are equipped with sensors; these sensors transmit the device data
such as engine readings or battery life to the Cloud or command centre, where this information is processed to make
future decisions such as capacity planning. Such systems are vulnerable to eavesdropping, replication, and man-in-the-
middle attack. The attacker can pretend to be a legitimate device and send erroneous or incorrect data to the command
centre, and the valid user can be blamed for sending false/fake information. Such attacks can be mitigated using Smart
Contracts, which can be installed on the ledger and while transmitting the sensor data, the unique identifier of the sensor
sent along with the data, this information will be recorded as part of Smart Contract execution, which can verify the
identity of the sensor. It is expected that data is sent within a quantum-safe encrypted form to mitigate man-in-the-
middle attack and eavesdropping.

7.2.4 Automated auctions/sales

Automated auctions are found in almost every field - for example, telecom regulators auction bandwidths to operators.
Smart Contracts can help automate this process in such a way that the bandwidth contract is installed on a PDL with
predefined parameters. An auction starts and ends with predefined time, and all the bids are recorded in a PDL. This
process becomes transparent to all the parties preventing dishonesty both by the bidder and the auctioneers. These bids
can be tailored for specific needs for visibility and automated actioning.

7.2.5 Mechanism for access control/certification authority

Smart Contracts may be used as a mechanism for access control; as by definition, they execute automatically, all the
access information (e.g. user credentials) can be recorded in a PDL. For example, a Smart Contract can be executed
when some access rights are granted by a PDL-based certification authority. This may prevent the future disputes of the
data breach and provide a record of all the information exchange and key distribution.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)24

In another example, Certificate Authorities are trusted by the users, and it is possible for malicious parties to act as a CA
and issue fake certificates. This can cause users to trust malicious websites and share their personal records and bank
information with them. This problem can be mitigated with PDLs by distributing trust between a group of users rather
than a single entity and can be compromised only when more than 50 % (or any higher threshold set by the governance)
nodes are malicious. As soon as user credentials are allocated, the respective Smart Contract can be executed, and all
the relevant information for the certificate is recorded. These credentials may be used to access the controlled data or
records (e.g. PDL data). Since the credentials are issued by the group of users in a PDL and their integrity is backed by
a transparent mechanism, they can be trusted. Also, it is difficult for malicious users to act as a CA because PDLs are
managed by a group of nodes, and all the records (such as public keys) are transparent, so the users can verify the
integrity of a website with the PDL.

Figure 7-1: Example of PDL based Certificate Authority

Smart Contracts can provide a mechanism for accessing data from a foreign ledger, by distributing authorized keys to
the authenticated participants only, in this way, the participants will not need to ask for access keys repeatedly; the key
distribution is recorded via Smart Contract to a PDL enabling the records to be updated automatically and transparent to
all PDL members. This facilitates the future audit of the access records.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)25

7.3 Solutions

7.3.1 Introduction

Smart Contracts have some limitations such as scalability and immutability, which are already discussed in earlier
clauses. In this clause, the possible solutions to these inherent properties of Smart Contracts (e.g. immutability and auto-
execution) are discussed. It is to be noted that in certain cases these properties cannot be eliminated but can be mitigated
through design and planning.

7.3.2 Scalability

All the executions of a Smart Contract are recorded in a PDL, and removing them from PDL is not possible for a typical
PDL. Because Smart Contracts cannot be removed, unused and dormant contracts may live for eternity in the PDL
costing PDL node resources. Some potential solutions to manage the scalability problem of PDLs due to Smart
Contracts specifically.

7.3.3 Check-point

The Smart Contracts can be installed on side-chains with a check-point to self-destruct after a certain time. A side-chain
can record the existence of the contracts in the master-chain before destruction. This can be achieved by introducing a
check-point (e.g. a specific date). For example, a side-chain with certain dealings between a telecom operator and a
vendor, and once this contract is completed, the chain is destructed, but final settlement transaction may be recorded in
the master-chain.

7.3.4 Extensibility

Smart Contracts are immutable; however, they can be extended or revised by adopting the off-chain mechanism. That is
to say that the master contract is deployed in a master-chain (or maybe the side-chain acting as master-chain) with the
initializing clauses only and include commands which call the logic contract. The logic contracts are separate contracts
which may be installed on the same or different (e.g. master-chain or side-chain) PDL or may be installed off-chain (i.e.
trusted data structure). Sample architecture for contract chaining is shown in Figure 6-3.

7.4 Security of contracts
Smart Contracts are software and are not web-based; hence the traditional application layer security protocols (such as
https) are not applicable to them. Incorrect information can activate Smart Contracts in a manner which may have a
negative impact on the ledger and its users. A possible solution is mandating that activation requests for Smart
Contracts are always generated from a Trusted Execution Environment (TEE) (Figure 7-2). In Figure 7-2 a Smart
Contract based QoS monitoring system is explained where TEE is installed on both the user and the operator, the
request to execute a Smart Contract is generated from the user, however, the QoS parameters are reported to the PDL
through a TEE which is submitted to the operator through customer's TEE. The detailed procedure is explained in
clause 7.5.

7.5 Example: Smart Contracts with QoS monitoring
The architecture explained in Figure 7-2 provides a mechanism of network services allocation using Smart Contracts;
the industry can adopt this for an accountable contractual mechanism for network service provisioning. In this
architecture, the operators and regulatory authority operate as PDL nodes, and customers (entities who need services)
have limited read-only access to the ledger that is, customers, do not take part in the consensus of the ledger. The
service contracts along with their Service Level Agreements (SLAs) are recorded (deployed) in the PDL in the form of
Smart Contracts.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)26

The goal of this architecture is that the service contracts or Service Level Agreement (SLA) along with QoS metrics
provided during the service provision is recorded in a PDL, enabling future audibility and SLA monitoring. To prevent
customer or operator being dishonest and reporting wrong QoS parameters, the QoS recording and reporting will be
done through TEE only. The annotations in Figure 7-2 are discussed below:

1) All the service contracts from all available operators are advertised on a Distributed Application (DApp)
(which works as a marketplace for the service contracts); these service contracts are backed by Smart
Contracts stored in the PDL. Like a typical marketplace, a customer can input their requirements and choose a
suitable network service offer. The customers may be asked to forward the agreed-upon payment to the chosen
operator using traditional means to prevent DDoS attacks on the PDL.

2) Once the customer chooses a service contract, the DApp fills an activation request to the corresponding Smart
Contract, transferring the payment due at the same time (which will be payable only if the request is
successful). The service request is then encoded as a transaction and sent to the PDL; customer is required to
sign this request to prove their approval. As mentioned earlier, the service contracts, as Smart Contracts are
already installed on the PDL and ready to accept execution requests.

3) The new transaction containing the activation request is added to the pool of pending requests by the validators
(i.e. operators and regulatory authorities), who will eventually accept it, through the distributed consensus
algorithm, if well-formed.

4) On successful execution, the respective operator gets notified and can start allocating the resources to provide
the requested service.

5) The service from the operator to the customer is being provided. At this stage, the actual QoS is managed by a
customer-side and an operator-side Trusted Execution Environment (TEE). The operator-side TEE is called as
Performance Monitor.

6) The Performance Monitor records the receipts from the user and send to the PDL inside the corresponding
Smart Contract (i.e. their agreement). This allows to verify, and prove, if the SLA has been fulfilled.

Figure 7-2: Smart Contracts with QoS monitoring

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)27

7.6 Needs - Requirements to build a viable system with Smart
Contracts

7.6.1 Regulatory aspects

The PDLs' governance may manage the Smart Contracts, the group organizing a PDL can reach a consensus on the
regulation of the terms and penalties in case of violation. For example, roaming is currently a challenge for mobile
network operators. In current systems, billing in roaming may be a long process and involves several steps such as
sending the usage to the home operator to make claims. To resolve this, customers' payment can be directed to the
visiting operators through the PDL and invocation of a Smart Contract. This system is only viable when both the
participants honour the Smart Contract and in the situations of dispute resolve them as per the governance of the PDL.

7.6.2 Security of the contracts

In Blockchains such as Ethereum, Smart Contracts are publicly available; as per Ethereum consensus a copy of every
contract is stored at every node; this may not be a scalable strategy for many real-world applications, where all the
participants, even from the same PDL are not involved in every agreement or contract.

In such a situation, a more exclusive mechanism can be adopted, where only the involved participants, may have access
to Smart Contracts. To ensure privacy in Smart Contracts, different access rights can be assigned to every participant of
the contract. Here, the participants can be direct trading parties or the other stakeholders such as the mediators (in PDL
access control mechanisms may prevent security breaches). Another advantage of this strategy is it enables scalability
for the nodes.

7.6.3 Secure data feed (oracles)

Smart Contracts usually get data from external sources such as oracle services; sometimes, this data-feed is used by
them to start executing specific functions such as payments and penalties. For example, in the telco-sector, the QoS
records are submitted to a contract to perform payment functions for the network services provided. It is likely that the
participants, such as clients, can tamper with the actual data to benefit themselves. For example, they report wrong QoS
metrics to blame the provider for not offering the contractual service. This problem can be tackled at the
implementation stage; however, security mechanisms such as the installation of trusted hardware at the customer end,
for example Trusted Code Base/Trusted Execution Environments (TEEs) can be adopted after checking implications.

7.6.4 Enforceability

Smart Contracts are self-executable, which means they can automatically execute with the fulfilment of a certain pre-
coded condition; When two or more parties internally or externally agree on a contract, they are expected to honour the
agreement without any disputes, and if there is any, the stakeholders can come together to resolve the issue as per
organization policies.

NOTE: Smart Contracts are enforceable across the borders (i.e. internationally) and can follow the PDL
governance policies and the participants' laws. This will be normatively addressed in a future
specification regarding the work on the UN regulations for international trade [i.5].

7.6.5 Availability

As Smart Contracts are aiming to be adopted as a contract mechanism for industry, an important consideration for them
is to be always available for execution which depends on the transaction speed of the native PDL. If a PDL supports
higher transaction speed it also allows more connections to Smart Contracts; the number of requests at the PDL (i.e.
transactions) impacts the availability of the PDL hence Smart Contracts.

Hence, to avoid unwanted traffic at the PDL, admission control mechanisms may be applied to ensure legitimate and
necessary nodes access the PDL only. For example, a PDL governance may enforce a rule to allow a node to send a
certain number of transactions in a specified time only after they are not allowed to send transactions for some specified
time, or they can go to hibernation state that is their "Idle-time". The number of allowed transactions and idle time of
nodes depends on the use-case and the governance of the PDL, for example, an organization using a PDL-type which
allows hundreds of transactions per second may allow more frequent transactions from their users compared to other
PDL-type which support tens of transactions per second which can accommodate a smaller number of participants.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)28

7.6.6 Attacks

7.6.6.1 Re-entrancy

Re-entrancy attack happens when the attacker takes hold of the contract and attempts to change the ledger through this
contract; one consequence is that they are possibly able to transfer funds to themselves. The most famous example of
this attack the DAO attack in 2016, in which the attacker was able to steal 3,6 million Ethers through a re-entrancy
attack.

Re-entrancy can be:

1) single function; and

2) cross-function.

In Single Function re-entrancy, the attacker can control only one function and recursively calls the same function to
create damage; for example, drain all funds managed by the contract. In Cross-function re-entrancy, the attacker can
control functions which share states with other functions. For example, a pay-out contract shares its state with a
vulnerable function.

7.6.6.2 Free option problem

This type of problem is well discussed in Plasma blockchain. When two parties, X and Y agree to do some purchase and
decide to pay through a Smart Contract, X sends its signed transaction; in the mean-time Y changes its mind and backs-
off. In this situation, X has already sent Y the payment for the item, but Y has refused to send the product; in this case,
Y has the Free-Option he can take the money without giving the product. In PDLs, this type of attack can be mitigated
by the governance and the penalties enforced by them.

7.6.6.3 Denial of capacity attack

Like other distributed systems, PDLs are vulnerable to attacks from malicious parties which can cause Denial of Service
(DoS) to legitimate users. For example, since the PDLs allow a finite number of transactions per second, the malicious
users can send continuous and redundant service requests from malicious users to the PDL, which can overwhelm the
PDL. A global lock of a certain time(possibly a few seconds) can be applied to prevent such happenings. Also, penalties
through governance may also prevent such wrongdoings.

8 Threats and limitations of Smart Contracts

8.1 Introduction
This clause discusses two major limitations of Smart Contracts 1) Inter and Intra system threats - These threats are due
to an internal and external system of the Smart Contracts and 2) Limitations of a Smart Contract - due to its inherent
properties.

8.2 Inter and intra system threats

8.2.1 Introduction

ITU, in its report on DLT [i.3] identified these potential risks to Smart Contract technology:

1) a reliance on a computer system itself that executes the contract;

2) flaws in the Smart Contract code (clause 8.2.5); and

3) the reliance on an external 'off-chain' event or person - to integrate with and execute - the embedded terms of
the contract.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)29

Some prominent points and their possible mitigation techniques are discussed below.

8.2.2 Absence of termination clause/self-destruction

In every Smart Contract, a termination function is a fragile entity. If it does not exist or is not programmed with the
utmost care, can be active for an indefinite period, which can prove very dangerous. For example, if a contract is meant
to be writing vehicle service records to the ledger such as location etc. and this car is sold by the company to another
company, the absence of or flaw in termination function can result in this vehicle to continue sending the critical data to
the ledger. This is dangerous to the new owner of the car because his information, perhaps critical, is being seen by a
third-party; also, for the old owner as this vehicle is still utilizing the ledger and occupying the costly storage. For
example, if a contract stipulates payment for a certain period of time and the contract does not expire after that period,
the amount will be paid indefinitely. Indeed, the payments can be cancelled by other means such as informing banks to
stop the payment, but that is also dependent on the design of the contract. Moreover, if such errors go unnoticed, can
potentially result in more significant losses such as the execution of certain terms which may harm the company's
reputation.

8.2.3 Admission control

Smart Contracts may be allowed by authorized participants only through stringent access control mechanisms; strong
governance can potentially handle this, and consensus agreed by the PDL members. If Smart Contracts' access is not
carefully managed, they can become open to malicious users. However, this risk in a PDL is minimum since the
participants are usually known and allowed with consensus, yet the risk of a replay attack exists. In such attacks, the
malicious party intercepts the communication, and sends a modified data; if an attacker can alter the data such as
payment amount or the payee, the payments will be issued by the contract. Admission control mechanisms can ensure
that the transactions received by the legitimate client only.

8.2.4 Off-chain and side-chain contracts handling

Smart contracts may be installed off-chain or on side-chains; they can be called external contracts. These external
contracts may not have full access the ledger and may be allowed to record some limited information to the main-chain
to synchronize with the system only and not allowed to perform specific actions such as access or read other contracts
of the main-chains or other side-chains.

However, these external contracts still may have certain write access to the main-chain, as they may be allowed to
report their contract status to the main-chain to synchronize with the network. The critical consideration here is that if
these side-chains or external data sources (i.e. the data structures maintaining off-chain contracts) are compromised,
they can send malicious and erroneous data to the main-chain. Such acts can cause more massive disruptions to the PDL
system, such as unauthorised initialization of other contracts and sending false information to the main-chain.

A method to mitigate such problems can be intrusion detection mechanisms installed on all the external sources and the
strong accountability imposed by the governance to the management of these data storages (i.e. side-chains and
off-chain storages).

8.2.5 Poor exception handling

If syntax and logic errors in a Smart Contract are not thoroughly checked and handled, it can cause an infinite loop or
hanged contract; this danger can be mitigated by careful design and testing of contracts, as discussed in clause 5.

8.2.6 Transparency of a PDL

Though private, PDL is still shared among members means that transactions are visible to the members. This can be
dangerous when competitors are sharing a ledger, for example in the situation of bidding, the price of bid is recorded as
a transaction in the ledger, the competing members can see this value in the ledger and can exploit this vulnerability.
This situation can be mitigated by governance such as using a hash instead of actual value or enter only encrypted
values in the ledger.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)30

8.2.7 External libraries

Computer software such as Smart Contracts rely on built-in programming language libraries; these third-party libraries
are prone to error, and using them may be risky. Furthermore, the malicious party can develop such a library to
penetrate in Smart Contracts. Developers may consider security vulnerabilities while using third-party libraries to avoid
any dangers to the Smart Contract.

8.3 Limitations

8.3.1 Introduction

Smart Contracts' inherent properties also cause some limitations. This clause outlines these limitations and
considerations that need management before the deployment of a viable contract. These limitations are specific to the
Smart Contract and dependent on the underlying PDL-type. For example, if some PDL-type with high transaction
speed, more Smart Contracts will be executed per second than the PDL-type, allowing fewer transactions per second.

8.3.2 Occupancy

Smart Contracts are software codes, and they are installed on a PDL, which by-definition is immutable. Hence if a
Smart Contract is installed on a PDL, it cannot be deleted or amended. As discussed in earlier clauses, there exist
mechanisms that allow the contracts to be updated. With such techniques, a new copy of a Smart Contract is installed,
then the pointer to the old contract is updated. These techniques do not remove the old contract, and it lives in the ledger
but dormant.

If dormant and inactive contracts populate a PDL, it can cause scalability problems over time.

8.3.3 Latency

The key consideration for deploying a Smart Contract is the delay or latency. The latency of a Smart Contract is the
time it takes for a contract to get deployed and executed and can be categorized in:

1) deployment latency; and

2) execution latency.

Smart Contracts get compiled on the local machines which can potentially be personal computers; then the request to
deploy them is issued by the deployment entity through a transaction. In this situation, the Smart Contract latency is
dependent on the compilation of the code and the network delay for a contract request to reach the chain.

Mostly, Smart Contracts get executed more often than deployment. The pre-deployed Smart Contract can be executed
by any entity with the right permissions. To execute or invoke a Smart Contract, a transaction is issued by the invoking
entity, and this depends upon the factors such as network connection and the congestion at the chain. Moreover, the
nodes of the ledger by-design are distributed across the World and computation, and speed limitations of every node
add an overhead to the latency in the verification of contract transaction.

The method of deployment and execution discussed here is a high-level picture of the Smart Contract system and is
strongly dependent on the underlying chain.

8.3.4 Underlying and Relying ledgers in permissioned context

One of the most important considerations for the industry to adopt Smart Contract technology is that of the underlying
ledger. Smart Contracts are deployed on the ledger such as Corda, Ethereum or Hyperledger Fabric. Every ledger is
unique in its properties and has different resource requirements. As of the time of writing the present document, there is
no system for ledgers to interact with different ledger exist, all the organizations or nodes use the same underlying
ledger technology in order to implement the Smart Contract as their contractual mechanism. This is not always possible
for several reasons such as economically and feasibly to use same ledger technology: hence, be part of the consortium.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)31

8.3.5 Not every term can be translated to a Smart Contract

Smart Contracts are nonetheless a computer program, and computer programs have very strict rules, such as if this then
that or do this until this condition becomes true or false. Nevertheless, in real-world contracts, the conditions are not
always this rigid and there is flexibility allowed intentionally by both parties, for example, if a business relationship
between two organizations is old and they do want to give each other some discount but not to record in the contract,
then it may be difficult to have a Smart Contract. For a Smart Contract, either it is, or it is not, there is no opportunity
for a middle ground. However, it is important for parties to be transparent in the contractual process and such bilateral
promises which cannot be translated to the code, can be recorded in additional contract field in a plain text or in hash
format, this will enable transparency between the participants. Adding this field in a hash form, can be verified later.

8.3.6 Legal uncertainty

PDL is comprised of distributed nodes, which can potentially be spread across the globe. The enforceability of Smart
Contracts in different countries can be an issue.

Legal aspects of contracts are beyond the scope of the present document, but geographic regulations and laws such as
GDPR still applies and depends on the governance and consortia.

For example, if two parties exist in the same country, the country laws will apply, but in a multi-jurisdictional
transaction, it is recommended to follow the UNCITRAL arbitration rules and considerations [i.5].

8.3.7 Intellectual property rights

If a Smart Contract is deployed on a consortia ledger, it is important that parties be aware of the potential exposure of
Smart Contract code to other parties, as depending on the ledger, either the source code of the contract, or the compiled
version of the contract is shared across the whole distributed ledger. This requires the parties to manage IPR related to
the Smart Contract, and potentially include licensing across consortia members or non-disclosure claims in the consortia
agreement to meet the required IPR management standards across the different organizations.

8.3.8 Accountability in smart contracts

Following some pre-auditing mechanism to guarantee the completeness of the Smart Contracts, there would be two
dimensions:

a) Smart Contracts that are minimal functionalities or security functionality components with the building blocks
consensus.

b) Smart Contracts that are for business layers and for development and enhancement proposals.

In terms of functional components, the accountability has cleared by the governance model which may include a
mechanism of testing, discoverability issues and mitigation of bugs before the genesis of the PDL which normally occur
on testnet period before the mainnet, but it has to be audited before the genesis block of the network which it would be
governed.

For the business layers, there is a variety of approach which in permissioned environment, either public or private, have
a modular ingredient whereby minimal terms of use are recommended and complete acquaintanceship with the
governing body of the PDL however in some cases the accountability could be a private permissioned environment
whereby the responsibility and liabilities would be by the perfected interest in business although replicate the usage of
the PDL in accordance with the consensus mechanism.

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)32

Annex A:
Change History

Date Version Information about changes
11-2019 0.0.1 Initial draft - added table of contents
12-2019 0.0.2 Added SC introduction, types and some text
01-2019 0.0.3 Cleaned draft
02-2020 0.0.4 Cleaned up after F2F meeting - deleted clause 6
03- 2020 0.0.5 Added lifecycle + clause 9
06-2020 0.0.6 Limitations+cleared after F2F(online) meeting
06-2020 0.0.6 Added architecture
10-2020 0.0.14 Cleaned up version from Edithelp
30-10-2020 0.0.14 Clean up after comments from the group
05-11-2020 0.0.15 Clean up and sent for final draft
15-12-2020 0.0.16 Clean and resolve comments and send for publishing

ETSI

ETSI GR PDL 004 V1.1.1 (2021-02)33

History
Document history

V1.1.1 February 2021 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction to Smart Contracts
	4.1 Introduction
	4.2 Object-Oriented Paradigm
	4.3 Properties of Smart Contracts
	4.3.1 Introduction
	4.3.2 Immutability
	4.3.3 Availability
	4.3.4 Transparency
	4.3.5 Self-Execution
	4.3.6 Reusability

	4.4 Storage
	4.5 The Lifecycle of a Smart Contract

	5 Smart Contracts - Lifecycle phases
	5.1 Introduction
	5.2 Planning Phase
	5.2.1 Introduction
	5.2.2 Governance
	5.2.2.1 Introduction
	5.2.2.2 Single-party Governance
	5.2.2.3 Multi-party Governance

	5.2.3 Design Planning - Coding and Testing
	5.2.4 Deployment Planning
	5.2.4.1 Introduction
	5.2.4.2 On-chain deployment
	5.2.4.3 Side-chain deployment
	5.2.4.4 Off-chain deployment
	5.2.4.5 Immutable deployment
	5.2.4.6 Terminable deployment
	5.2.4.7 Upgradeable deployment

	5.2.5 Draft template
	5.2.5.1 Introduction
	5.2.5.2 Terms negotiation
	5.2.5.3 Map draft template to the machine-readable context (Compile Draft)
	5.2.5.4 Draft review (reference checklist)

	5.3 Coding and testing phase
	5.3.1 Introduction
	5.3.2 Coding process
	5.3.3 Testing process
	5.3.4 Code/Programming language level Testing
	5.3.5 Smart Contract specific testing
	5.3.5.1 Open source SC analysers
	5.3.5.2 Sandbox testing
	5.3.5.3 Three passes

	5.3.6 Validation
	5.3.7 User experience testing
	5.3.8 Consumer protection

	5.4 Deployment and execution phase
	5.4.1 Deployment
	5.4.2 Execution
	5.4.3 Termination

	6 Architectural requirements for Smart Contracts
	6.1 Introduction
	6.2 Architectural requirements
	6.2.1 Reusability
	6.2.2 Self-destruction
	6.2.3 Data ownership

	6.3 Reference architecture
	6.3.1 Introduction
	6.3.2 Data retrieval in Smart Contracts
	6.3.3 Transactions and transaction dependencies
	6.3.4 Smart Contract architecture - Without Smart Contract chaining
	6.3.5 Smart Contract architecture - with contracts chaining

	7 Smart Contracts - applications, solutions and needs
	7.1 Introduction
	7.2 Applications
	7.2.1 Introduction
	7.2.2 ICT Sector
	7.2.3 Automated machines/sensors
	7.2.4 Automated auctions/sales
	7.2.5 Mechanism for access control/certification authority

	7.3 Solutions
	7.3.1 Introduction
	7.3.2 Scalability
	7.3.3 Check-point
	7.3.4 Extensibility

	7.4 Security of contracts
	7.5 Example: Smart Contracts with QoS monitoring
	7.6 Needs - Requirements to build a viable system with Smart Contracts
	7.6.1 Regulatory aspects
	7.6.2 Security of the contracts
	7.6.3 Secure data feed (oracles)
	7.6.4 Enforceability
	7.6.5 Availability
	7.6.6 Attacks
	7.6.6.1 Re-entrancy
	7.6.6.2 Free option problem
	7.6.6.3 Denial of capacity attack

	8 Threats and limitations of Smart Contracts
	8.1 Introduction
	8.2 Inter and intra system threats
	8.2.1 Introduction
	8.2.2 Absence of termination clause/self-destruction
	8.2.3 Admission control
	8.2.4 Off-chain and side-chain contracts handling
	8.2.5 Poor exception handling
	8.2.6 Transparency of a PDL
	8.2.7 External libraries

	8.3 Limitations
	8.3.1 Introduction
	8.3.2 Occupancy
	8.3.3 Latency
	8.3.4 Underlying and Relying ledgers in permissioned context
	8.3.5 Not every term can be translated to a Smart Contract
	8.3.6 Legal uncertainty
	8.3.7 Intellectual property rights
	8.3.8 Accountability in smart contracts

	Annex A: Change History
	History

